extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×C4○D4)⋊1C22 = D5×C4○D8 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):1C2^2 | 320,1439 |
(C5×C4○D4)⋊2C22 = Q16⋊D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):2C2^2 | 320,1440 |
(C5×C4○D4)⋊3C22 = D8⋊15D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4+ | (C5xC4oD4):3C2^2 | 320,1441 |
(C5×C4○D4)⋊4C22 = D8⋊11D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):4C2^2 | 320,1442 |
(C5×C4○D4)⋊5C22 = D5×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 40 | 8+ | (C5xC4oD4):5C2^2 | 320,1444 |
(C5×C4○D4)⋊6C22 = D8⋊5D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4):6C2^2 | 320,1446 |
(C5×C4○D4)⋊7C22 = D8⋊6D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4):7C2^2 | 320,1447 |
(C5×C4○D4)⋊8C22 = D20.32C23 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4):8C2^2 | 320,1507 |
(C5×C4○D4)⋊9C22 = D20.34C23 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4):9C2^2 | 320,1509 |
(C5×C4○D4)⋊10C22 = D5×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 40 | 8+ | (C5xC4oD4):10C2^2 | 320,1622 |
(C5×C4○D4)⋊11C22 = D20.37C23 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4):11C2^2 | 320,1623 |
(C5×C4○D4)⋊12C22 = D5×2- 1+4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4):12C2^2 | 320,1624 |
(C5×C4○D4)⋊13C22 = D20.39C23 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4):13C2^2 | 320,1625 |
(C5×C4○D4)⋊14C22 = C5×D4○D8 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):14C2^2 | 320,1578 |
(C5×C4○D4)⋊15C22 = C5×D4○SD16 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):15C2^2 | 320,1579 |
(C5×C4○D4)⋊16C22 = C2×D4⋊D10 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | | (C5xC4oD4):16C2^2 | 320,1492 |
(C5×C4○D4)⋊17C22 = C2×D4.8D10 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | | (C5xC4oD4):17C2^2 | 320,1493 |
(C5×C4○D4)⋊18C22 = C20.C24 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):18C2^2 | 320,1494 |
(C5×C4○D4)⋊19C22 = C2×D5×C4○D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | | (C5xC4oD4):19C2^2 | 320,1618 |
(C5×C4○D4)⋊20C22 = C2×D4⋊8D10 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | | (C5xC4oD4):20C2^2 | 320,1619 |
(C5×C4○D4)⋊21C22 = C2×D4.10D10 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | | (C5xC4oD4):21C2^2 | 320,1620 |
(C5×C4○D4)⋊22C22 = C10.C25 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):22C2^2 | 320,1621 |
(C5×C4○D4)⋊23C22 = C10×C4○D8 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | | (C5xC4oD4):23C2^2 | 320,1574 |
(C5×C4○D4)⋊24C22 = C10×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | | (C5xC4oD4):24C2^2 | 320,1575 |
(C5×C4○D4)⋊25C22 = C5×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4):25C2^2 | 320,1577 |
(C5×C4○D4)⋊26C22 = C10×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | | (C5xC4oD4):26C2^2 | 320,1632 |
(C5×C4○D4)⋊27C22 = C10×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | | (C5xC4oD4):27C2^2 | 320,1633 |
(C5×C4○D4)⋊28C22 = C5×C2.C25 | φ: trivial image | 80 | 4 | (C5xC4oD4):28C2^2 | 320,1634 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×C4○D4).1C22 = D5×C4≀C2 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 40 | 4 | (C5xC4oD4).1C2^2 | 320,447 |
(C5×C4○D4).2C22 = C42⋊D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).2C2^2 | 320,448 |
(C5×C4○D4).3C22 = D4⋊4D20 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 40 | 4+ | (C5xC4oD4).3C2^2 | 320,449 |
(C5×C4○D4).4C22 = M4(2).22D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).4C2^2 | 320,450 |
(C5×C4○D4).5C22 = C42.196D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).5C2^2 | 320,451 |
(C5×C4○D4).6C22 = M4(2)⋊D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).6C2^2 | 320,452 |
(C5×C4○D4).7C22 = D4.9D20 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4- | (C5xC4oD4).7C2^2 | 320,453 |
(C5×C4○D4).8C22 = D4.10D20 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).8C2^2 | 320,454 |
(C5×C4○D4).9C22 = D8⋊5Dic5 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).9C2^2 | 320,823 |
(C5×C4○D4).10C22 = D8⋊4Dic5 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).10C2^2 | 320,824 |
(C5×C4○D4).11C22 = D20⋊18D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 40 | 8+ | (C5xC4oD4).11C2^2 | 320,825 |
(C5×C4○D4).12C22 = M4(2).D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4).12C2^2 | 320,826 |
(C5×C4○D4).13C22 = M4(2).13D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).13C2^2 | 320,827 |
(C5×C4○D4).14C22 = D20.38D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).14C2^2 | 320,828 |
(C5×C4○D4).15C22 = D20.39D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4).15C2^2 | 320,829 |
(C5×C4○D4).16C22 = M4(2).15D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4).16C2^2 | 320,830 |
(C5×C4○D4).17C22 = M4(2).16D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 160 | 8- | (C5xC4oD4).17C2^2 | 320,831 |
(C5×C4○D4).18C22 = D20.40D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).18C2^2 | 320,832 |
(C5×C4○D4).19C22 = 2+ 1+4⋊D5 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 40 | 8+ | (C5xC4oD4).19C2^2 | 320,868 |
(C5×C4○D4).20C22 = 2+ 1+4.D5 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).20C2^2 | 320,869 |
(C5×C4○D4).21C22 = 2- 1+4⋊2D5 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4).21C2^2 | 320,872 |
(C5×C4○D4).22C22 = 2- 1+4.2D5 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).22C2^2 | 320,873 |
(C5×C4○D4).23C22 = D20.47D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 160 | 4- | (C5xC4oD4).23C2^2 | 320,1443 |
(C5×C4○D4).24C22 = SD16⋊D10 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).24C2^2 | 320,1445 |
(C5×C4○D4).25C22 = D5×C8.C22 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).25C2^2 | 320,1448 |
(C5×C4○D4).26C22 = D40⋊C22 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4).26C2^2 | 320,1449 |
(C5×C4○D4).27C22 = C40.C23 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8+ | (C5xC4oD4).27C2^2 | 320,1450 |
(C5×C4○D4).28C22 = D20.44D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 160 | 8- | (C5xC4oD4).28C2^2 | 320,1451 |
(C5×C4○D4).29C22 = D20.33C23 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 8- | (C5xC4oD4).29C2^2 | 320,1508 |
(C5×C4○D4).30C22 = D20.35C23 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 160 | 8- | (C5xC4oD4).30C2^2 | 320,1510 |
(C5×C4○D4).31C22 = C5×D4⋊4D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 40 | 4 | (C5xC4oD4).31C2^2 | 320,954 |
(C5×C4○D4).32C22 = C5×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).32C2^2 | 320,955 |
(C5×C4○D4).33C22 = C5×D4.9D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).33C2^2 | 320,956 |
(C5×C4○D4).34C22 = C5×D4.10D4 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).34C2^2 | 320,957 |
(C5×C4○D4).35C22 = C5×Q8○D8 | φ: C22/C1 → C22 ⊆ Out C5×C4○D4 | 160 | 4 | (C5xC4oD4).35C2^2 | 320,1580 |
(C5×C4○D4).36C22 = D4.3D20 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).36C2^2 | 320,768 |
(C5×C4○D4).37C22 = D4.4D20 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4+ | (C5xC4oD4).37C2^2 | 320,769 |
(C5×C4○D4).38C22 = D4.5D20 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | 4- | (C5xC4oD4).38C2^2 | 320,770 |
(C5×C4○D4).39C22 = C40.93D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).39C2^2 | 320,771 |
(C5×C4○D4).40C22 = C40.50D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).40C2^2 | 320,772 |
(C5×C4○D4).41C22 = C2×D4⋊2Dic5 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | | (C5xC4oD4).41C2^2 | 320,862 |
(C5×C4○D4).42C22 = (D4×C10)⋊21C4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).42C2^2 | 320,863 |
(C5×C4○D4).43C22 = D5×C8○D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).43C2^2 | 320,1421 |
(C5×C4○D4).44C22 = C20.72C24 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).44C2^2 | 320,1422 |
(C5×C4○D4).45C22 = D4.11D20 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).45C2^2 | 320,1423 |
(C5×C4○D4).46C22 = D4.12D20 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4+ | (C5xC4oD4).46C2^2 | 320,1424 |
(C5×C4○D4).47C22 = D4.13D20 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | 4- | (C5xC4oD4).47C2^2 | 320,1425 |
(C5×C4○D4).48C22 = C2×D4.Dic5 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | | (C5xC4oD4).48C2^2 | 320,1490 |
(C5×C4○D4).49C22 = C20.76C24 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).49C2^2 | 320,1491 |
(C5×C4○D4).50C22 = C2×D4.9D10 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | | (C5xC4oD4).50C2^2 | 320,1495 |
(C5×C4○D4).51C22 = C10×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | | (C5xC4oD4).51C2^2 | 320,921 |
(C5×C4○D4).52C22 = C5×C42⋊C22 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).52C2^2 | 320,922 |
(C5×C4○D4).53C22 = C5×C8○D8 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 2 | (C5xC4oD4).53C2^2 | 320,944 |
(C5×C4○D4).54C22 = C5×C8.26D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).54C2^2 | 320,945 |
(C5×C4○D4).55C22 = C5×D4.3D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).55C2^2 | 320,972 |
(C5×C4○D4).56C22 = C5×D4.4D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 80 | 4 | (C5xC4oD4).56C2^2 | 320,973 |
(C5×C4○D4).57C22 = C5×D4.5D4 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | 4 | (C5xC4oD4).57C2^2 | 320,974 |
(C5×C4○D4).58C22 = C10×C8.C22 | φ: C22/C2 → C2 ⊆ Out C5×C4○D4 | 160 | | (C5xC4oD4).58C2^2 | 320,1576 |
(C5×C4○D4).59C22 = C10×C8○D4 | φ: trivial image | 160 | | (C5xC4oD4).59C2^2 | 320,1569 |
(C5×C4○D4).60C22 = C5×Q8○M4(2) | φ: trivial image | 80 | 4 | (C5xC4oD4).60C2^2 | 320,1570 |